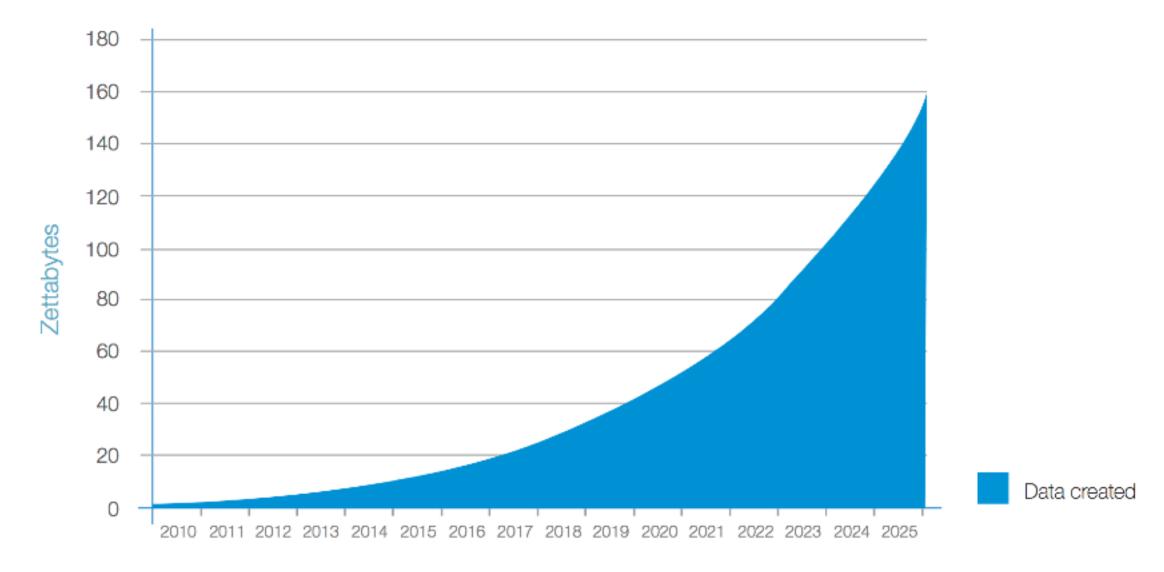


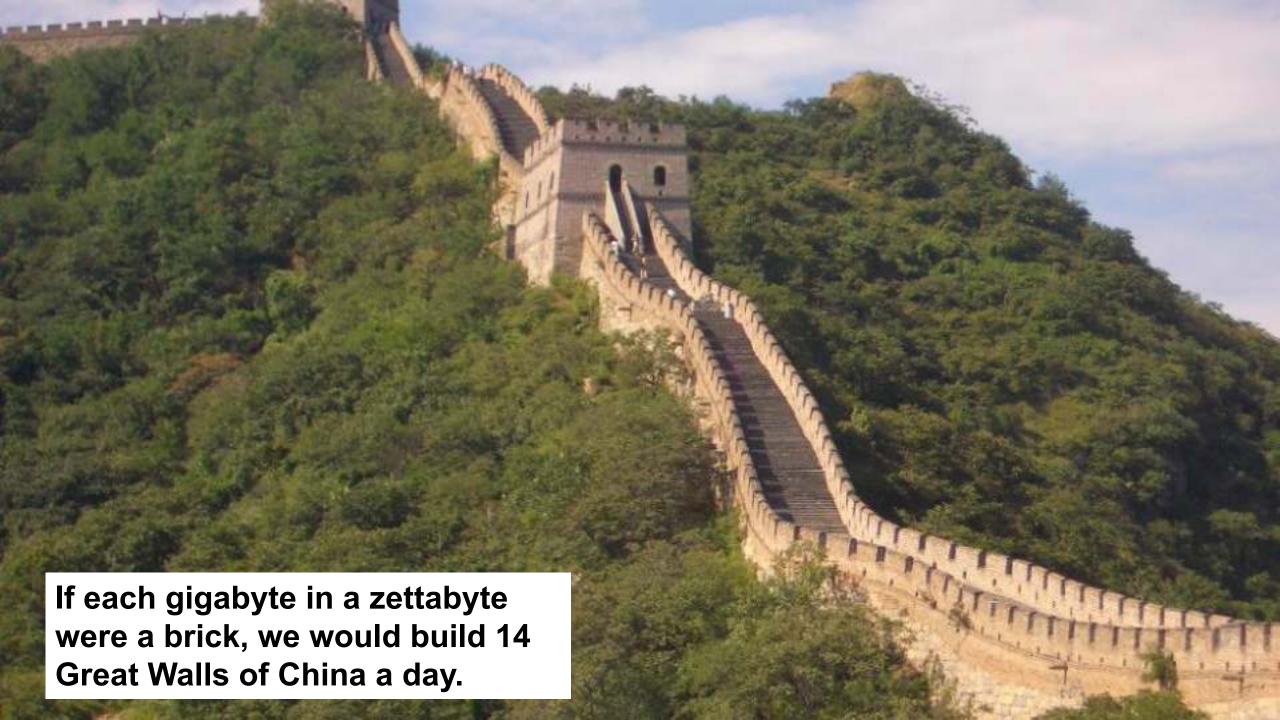
HOW AI WILL CHANGE MARKETING FOREVER

Christopher S. Penn
Co-Founder, BrainTrust Insights
BrainTrustInsights.com | @TrustInsights
Christopherspenn.com | @cspenn

VOLUME

Figure 2. Annual Size of the Global Datasphere





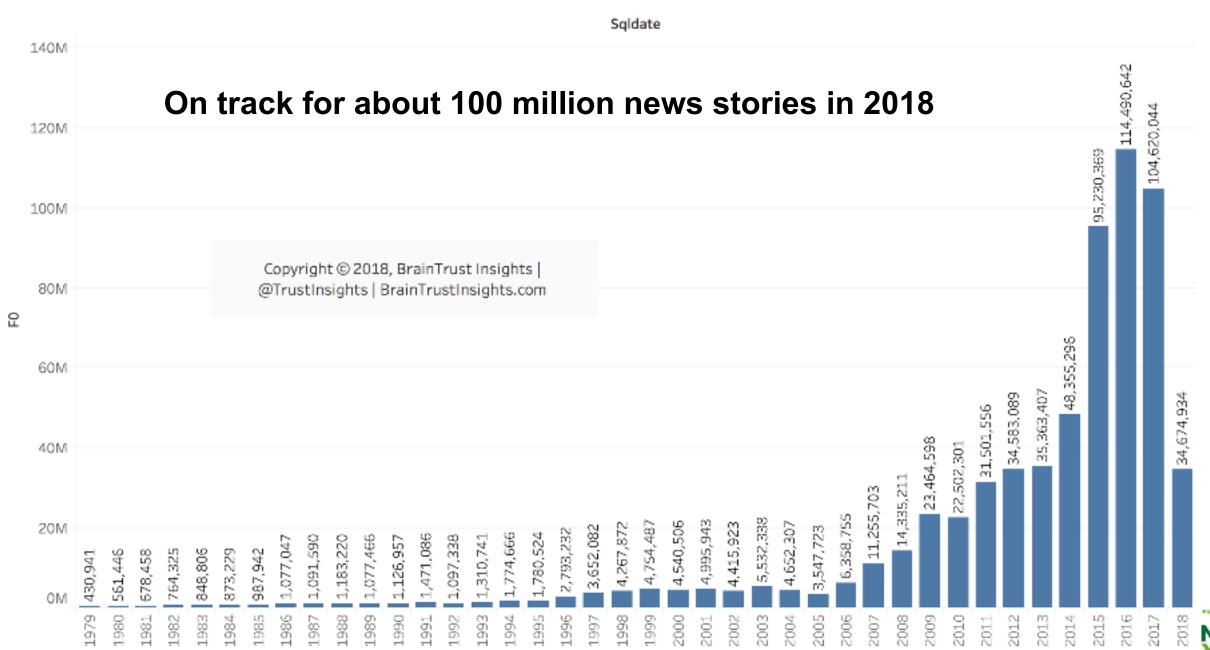
VOLUME VARIETY

2017 This Is What Happens In An Internet Minute

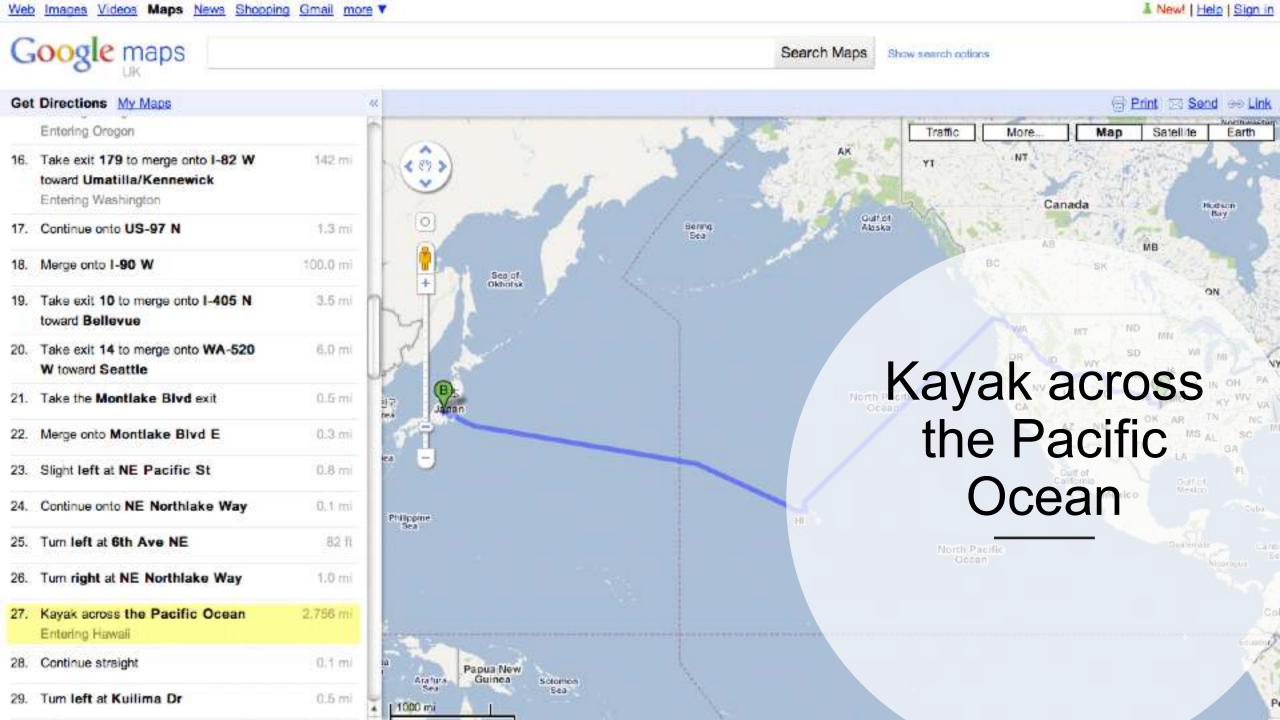
facebook Google You Tube 900,000 16 Million Logins Text 3.5 Million 4.1 Million Messages Videos Viewed Search Google play NETFLIX **Oueries** AppStore 70,017 342,000 Hours Apps Downloaded Watched \$751,522 46,200 Posts Uploaded Instagram Spent Online 1.8 Million 452,000 SECONDS Snaps Tweets Sent Created 15,000 990,000 GIFs Sent via Swipes Messenger tinder. 120 156 Million **New Accounts** Emails Sent Created 50 40,000 Voice-First Hours Linked in Devices Shipped Listened Created By: **■** @Loritewis amazon echo **★** @OfficiallyChadd

2018 This Is What Happens In An Internet Minute

VOLUME VARIETY VELOCITY

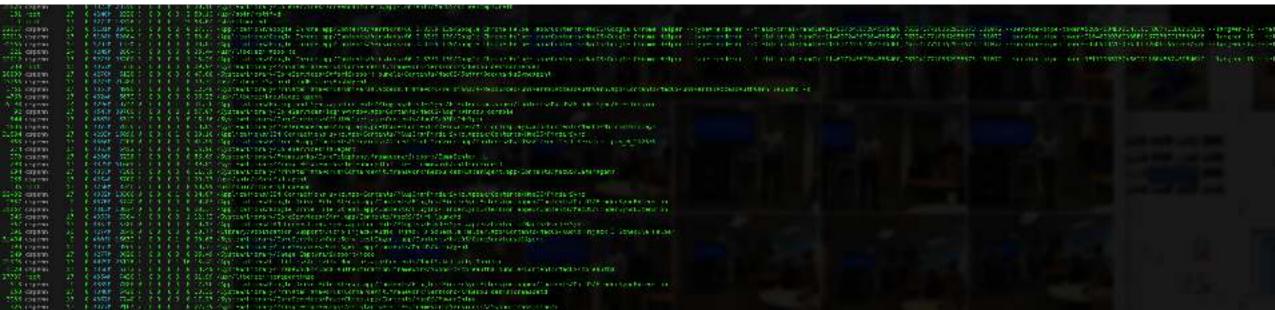


VOLUME VARIETY VELOCITY VERACITY



The Prescription Is Cognitive Marketing

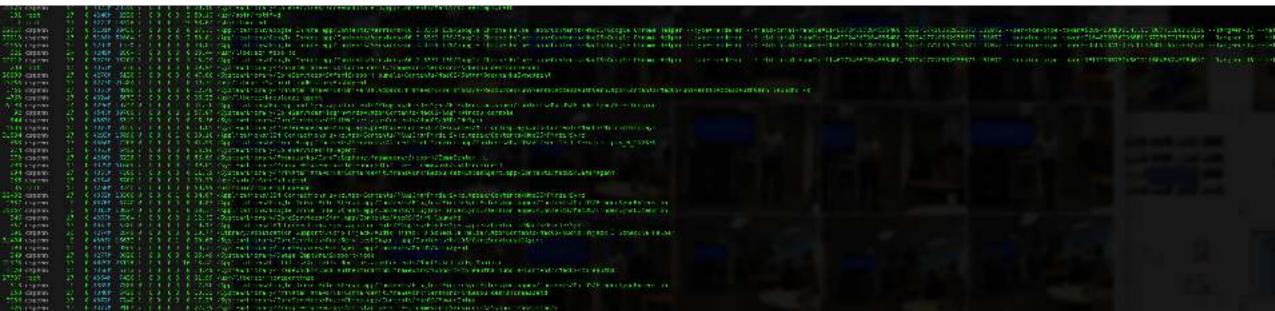
What is Cognitive Marketing?



Marketing that Learns

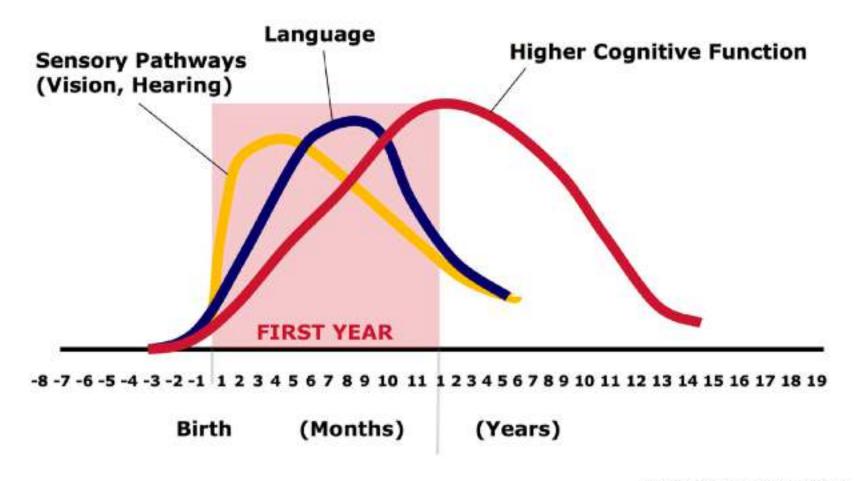
Using AI & ML Technologies

What is Artificial Intelligence?



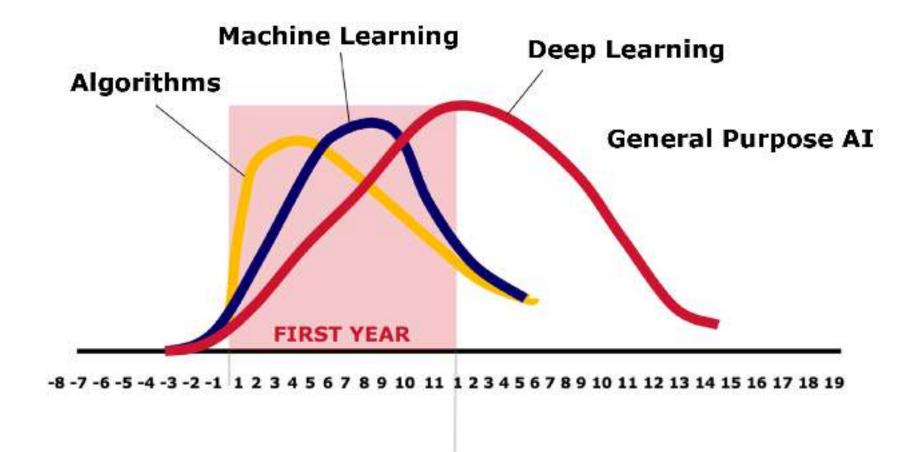
Human Brain Development

Neural Connections for Different Functions Develop Sequentially



NE XX 10X

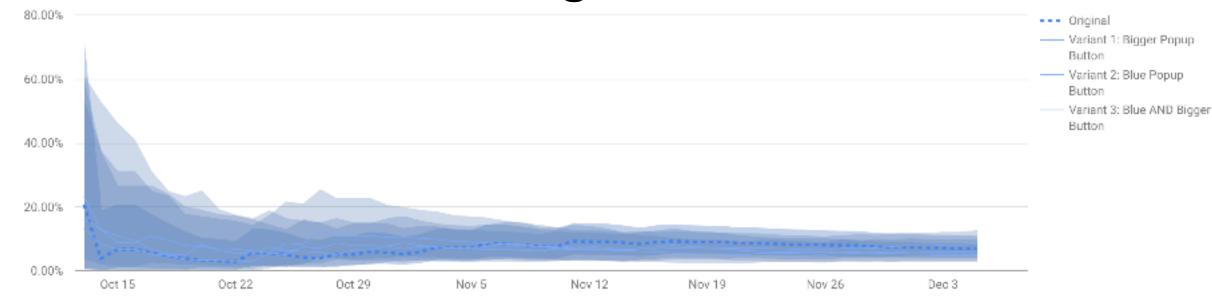
Where Machine Learning and AI Are Going



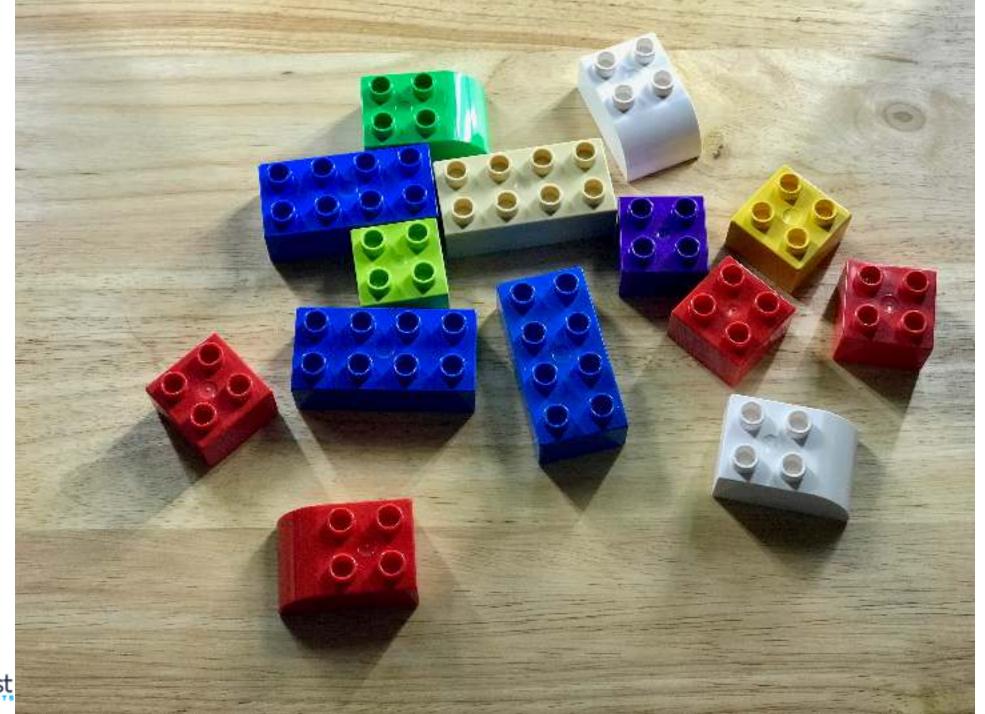
>	↑ Variant	Improvement		Conversion Rate	Conversions	Experiment Sessions	Probability to beat baseline	Probability to be Best
>	Original	baseline	6.93% (3.95%, 10.93%)		15	220	baseline	23%
>	Variant 1: Bigger Popup B	-15.32% (-61.05%, 80.34%)	5.86% (3.13%, 9.75%)	-	11	200	33%	10%
>	Variant 2: Blue Popup Butt	22.65% (-36.76%, 144.34%)	8.49% (5.25%, 12.71%)		18	221	73%	64%
>	Variant 3: Blue AND Bigger	-25.72% (-65.89%, 58.55%)	5.14% (2.73%, 8.57%)	-	11	228	22%	4%

Conversion Rate Over time

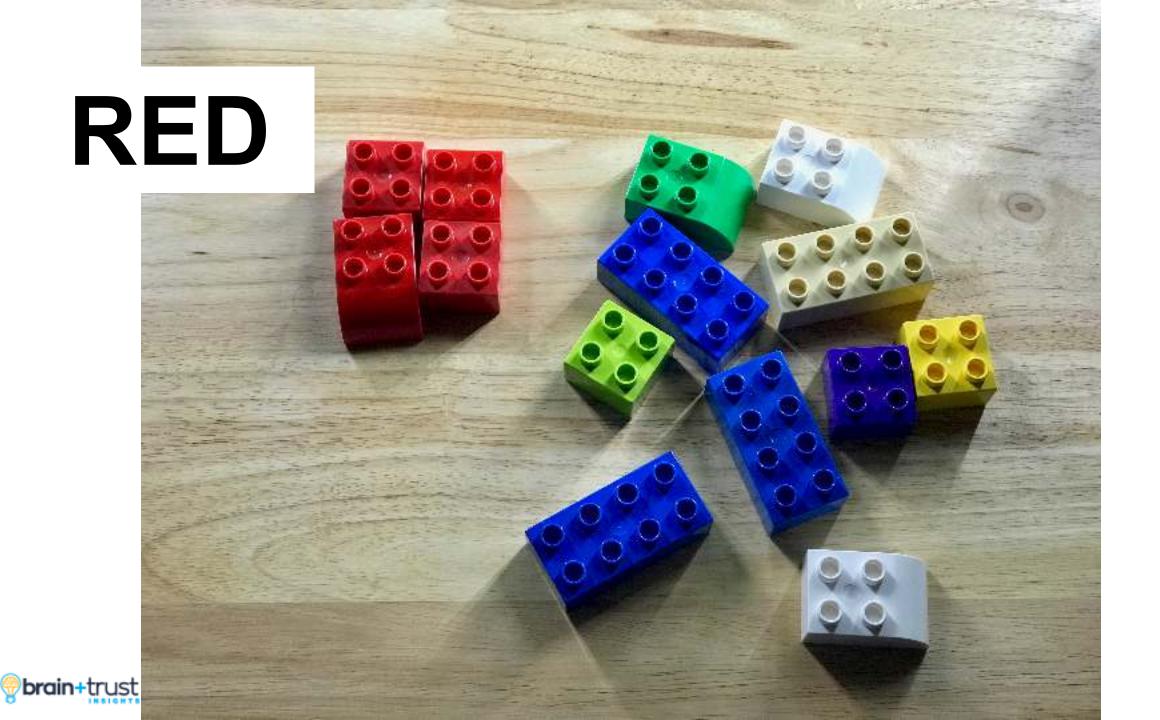
A/B Split Tests and Multivariate Tests Are Algorithms



Machine Learning



Supervised Learning



Home

Patients

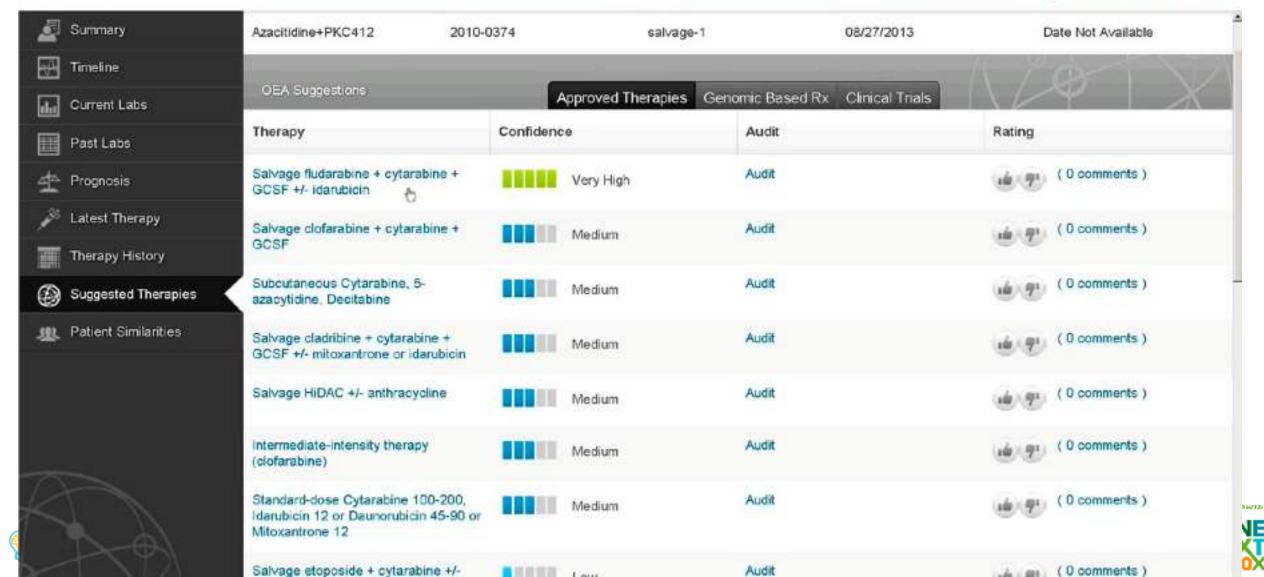
Cohorts

Therapy

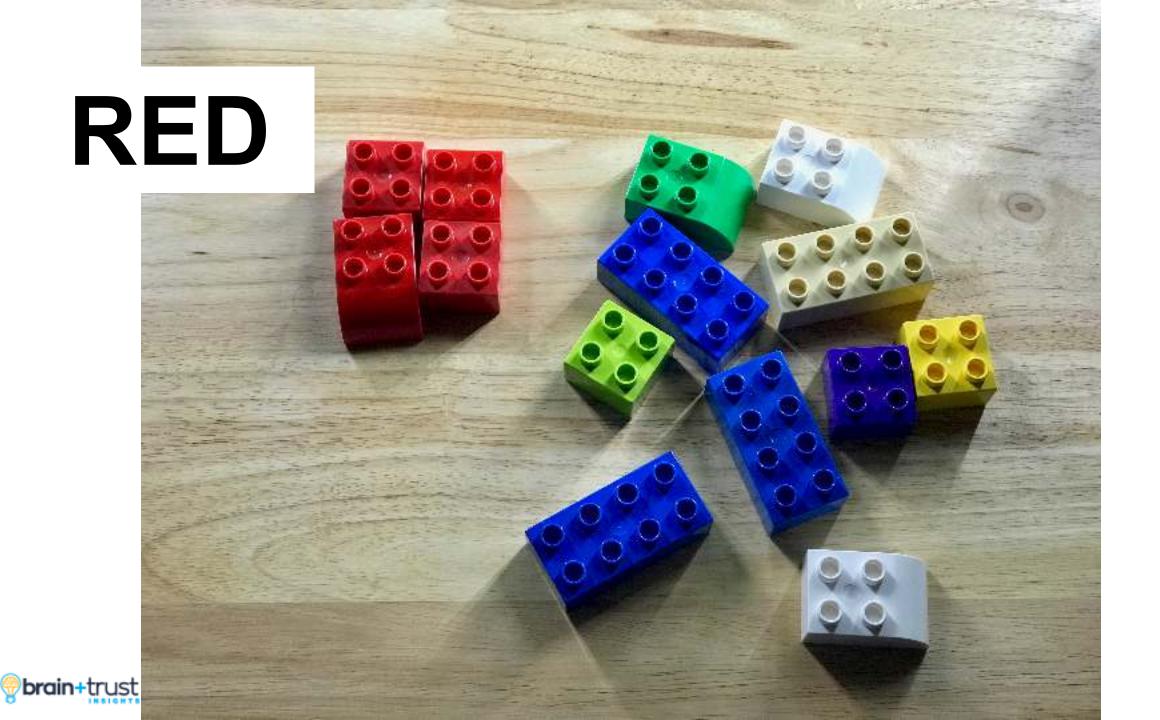
Patient List > Raymond Svenson

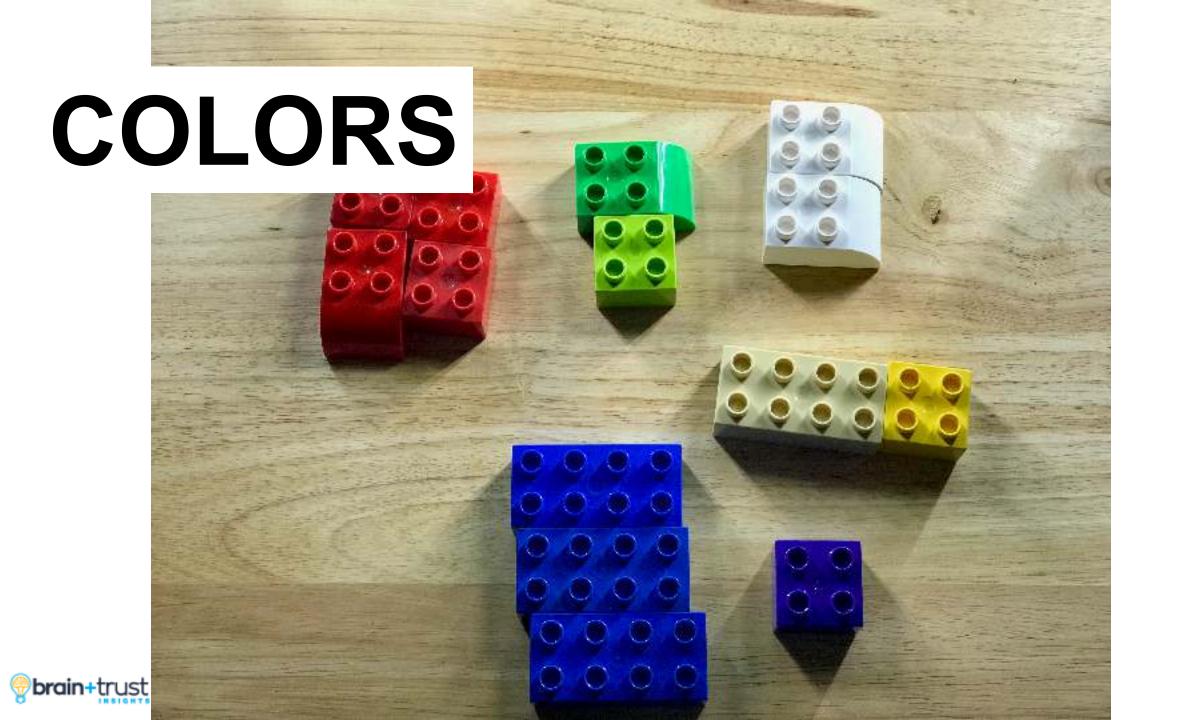
Patient: Raymond Svenson

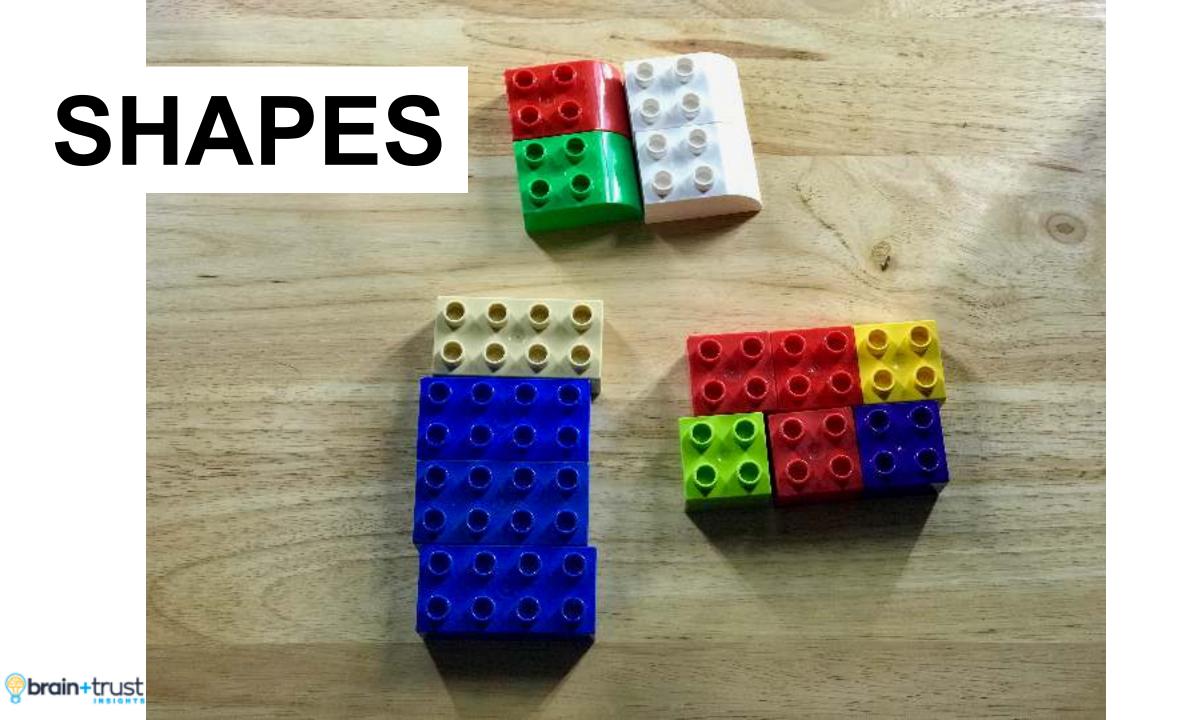
0 -

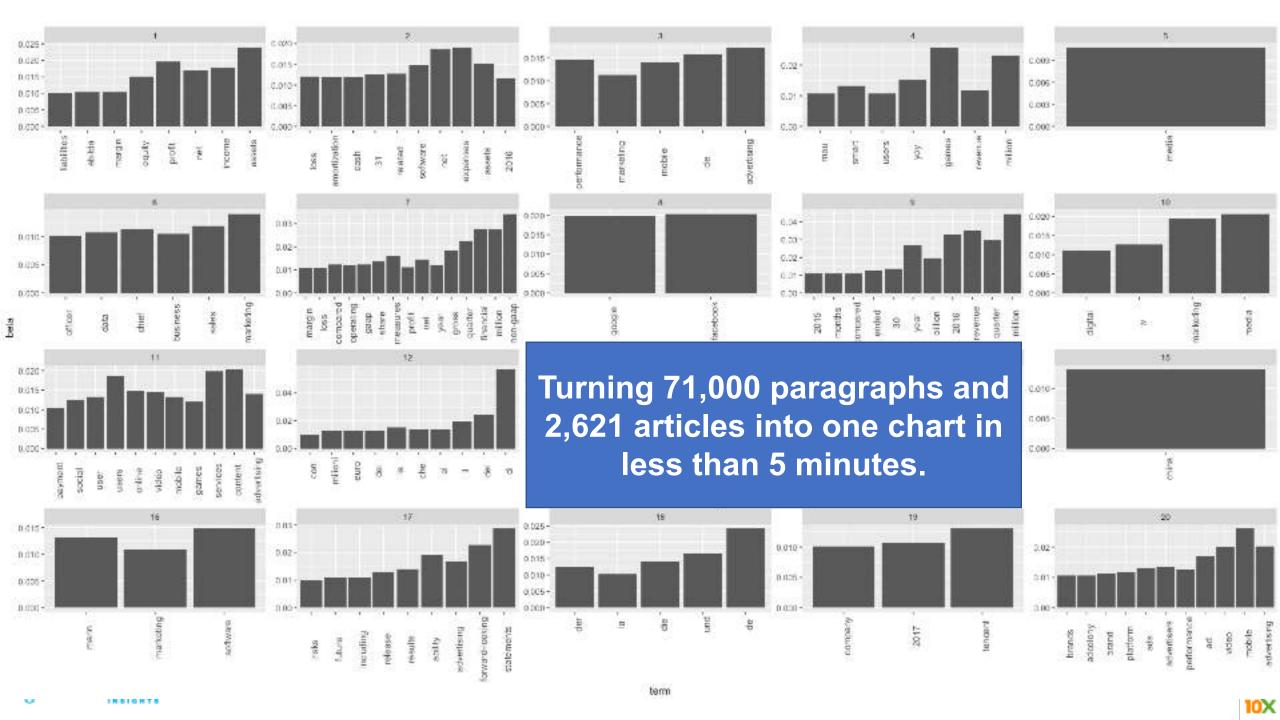


Unsupervised Learning







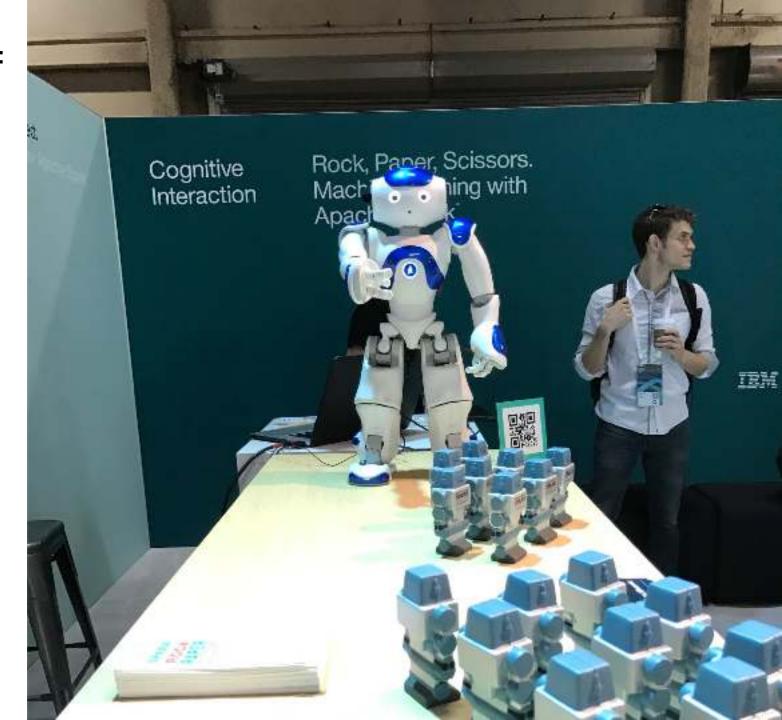


Machine Learning is Mostly Math & Statistics

Example Machine Learning Techniques:

Clustering Algorithms **Decision Trees** Ensemble Methods Independent Component Analysis K-means Linear Regression Logistic Regression Naïve Bayes Classification Ordinary Least Squares Regression Principal Component Analysis Random Forests Singular Value Decomposition Support Vector Machines

http://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html



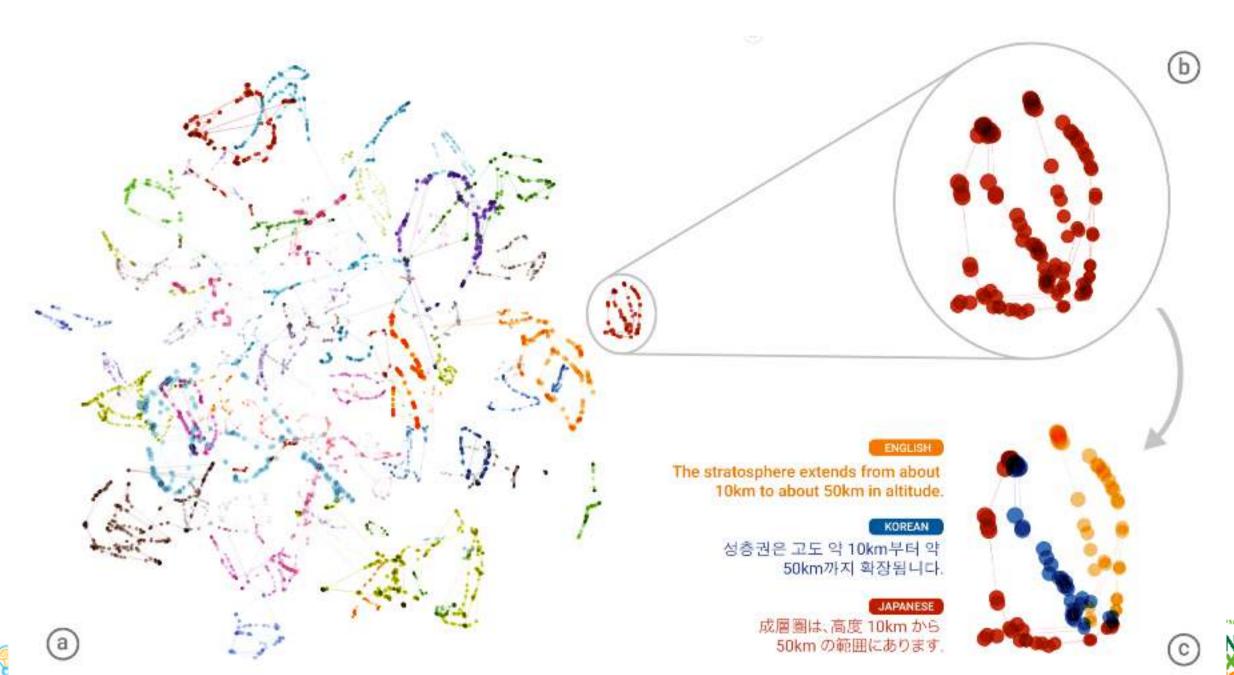
Deep Learning

Many Layers of Machine Learning

Deep Learning

Machines that think like us

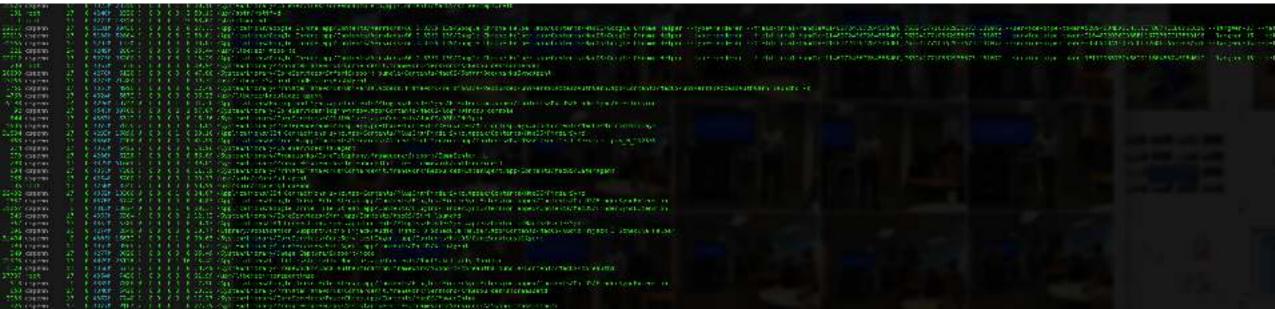
faster
... only better
cheaper



Artificial Intelligence Algorithms Machine Learning Deep Learning

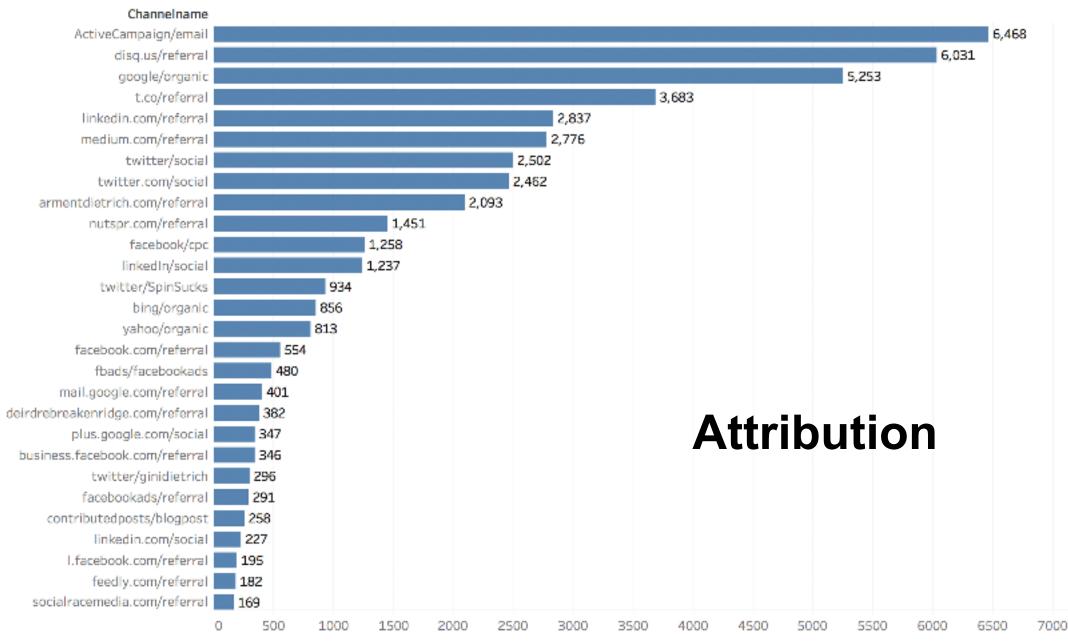
Where Machine Learning and Al Are Not Going

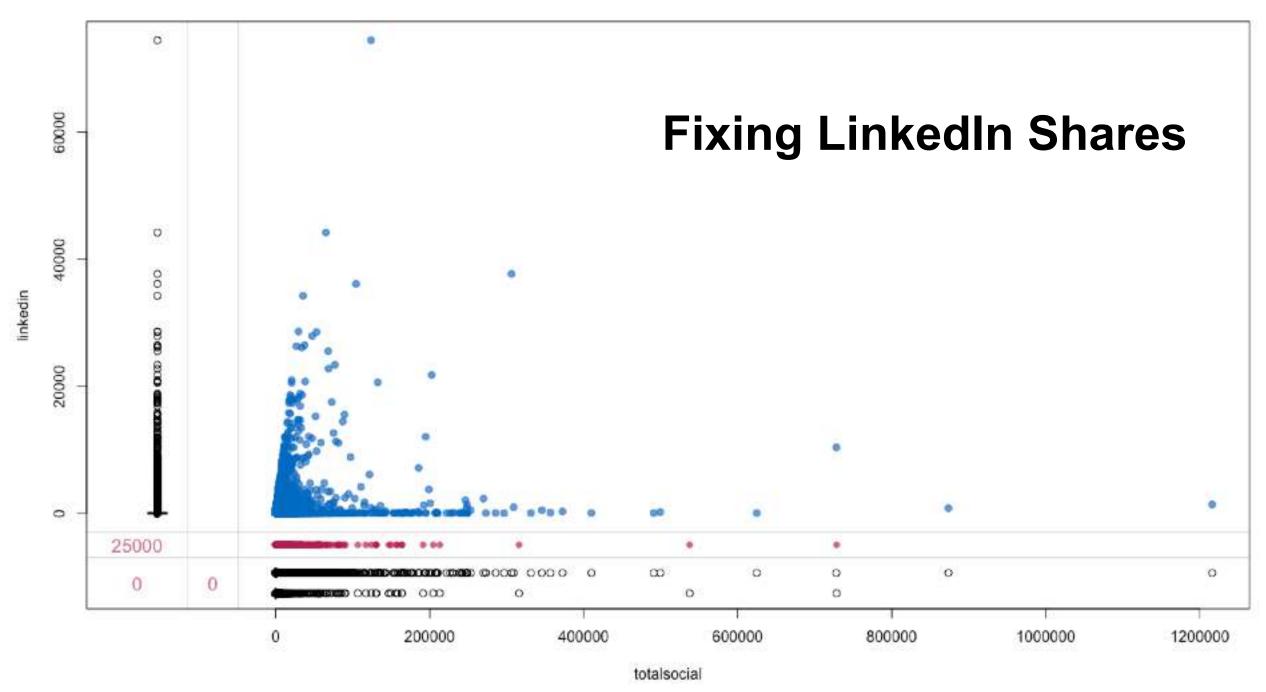
How Do We Use Al in Marketing Now?



Foundation

Markov Chain Model - Attribution by Goal Value - All Goals





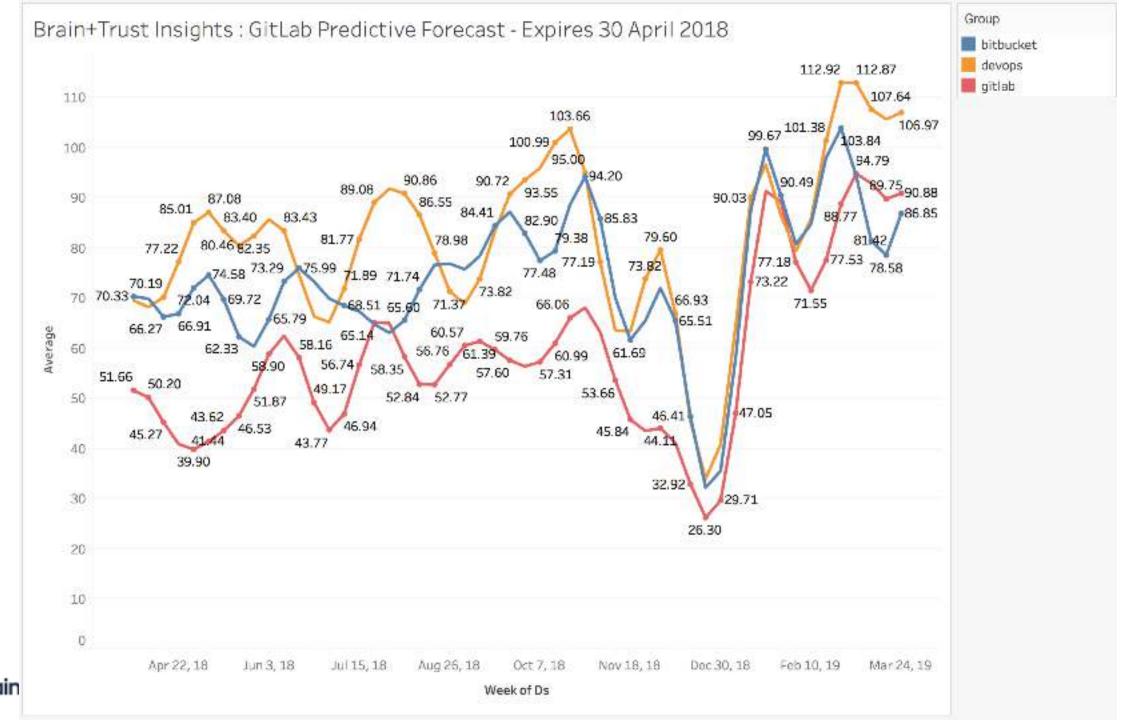
Connection

Understanding

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
3.06%	2.86%	2.35%	1.59%	1.49%	1.31%	1.06%	1.00%	0.94%	0.81%
marketing	consumer	marketing	business	products	lesson	product	worksheet	search	ago
definition	markets	content	marketing	businesses	courses	service	industry	brands	days
business	business-to-business	advertising	marketers	services	custom	terms	specific	online	hours
examples	market	social	customers	consumers	lessons	marketing	news	marketing	account
strategies	decision	digital	brand	buy	share	policy	buyers	social	marketingb
strategy	business	business	page	product	account	technology	materials	internet	marketingverified
research	target	social_media	importance	consumer	learn	cart	life	content	boston
degree	purchase	success	relationships	companies	video	privacy	names	investment	rights
review	companies	facebook	management	sell	tweet	segment	world	mind	reserved
consumer	marketing	media	sale	purchase	college	require	multiple	white	human
overview	customers	companies	security	quality	add	technical	authors	research	media
sales	products	goal	customer	level	start	price	common	companies	international
customer	key	platforms	branding	tend	study	office	⊪Ke/	erse	return
content	buying	sales	potential	single	people	offering	company	papers	means
principles	marketers	trade	current	food	exams	provided	an Chill	neeri	na
process	transactions	channels	lead	business	free_trial	offer	raw	selling	hote
services	marketer	reach	technical	grocery	plan	b enefits	skill:	ogle	waterfront
techniques	segments	brand	strategic	customers	create	support	research	social media	westin
business-to-business	individual	company	focused	customer	million	market	transaction	events	abbott
types	buyers	promotion	develop	salesperson	reply	services	marketing	efforts	entrepreneur
automation	edit	world	clients	expertise	access	billingintervaltype	quiz	optimization	profile
information	price	businesses	executives	purchasing	cancel	уууу	maint	consumers	follow
distribution	consumers	campaign	trust	required	page	flashcards	relationship	sites	sales
consumers	emotional	instagram	issues	rebuy	content	organization	legal	direct	decision
behavior	largest	engage	team	stores	exam	reviews	party	requires	worker

```
[text256, 6]
                          , salad, | breadsticks | , and sometimes
 [text259, 17]
                        salad, and | breadsticks | will run a
                    like putting 6 | breadsticks | in a basket
 [text302, 64]
                 unlimited salads, | breadsticks | , and soups
 [text318, 69]
[text351, 160]
                     They also get | breadsticks | . As many
 [text371, 21]
                        salad, and | breadsticks | . Hard work
                endless soup salad | breadsticks | , just to
 [text377, 37]
 [text381, 4]
                    Soup salad and | breadsticks | are the worst
 [text389, 8]
                         - drinks, | breadsticks | , soups,
 [text514, 16]
                        salad, and | breadsticks | . There are
                        Salad, and | Breadsticks | ( lunch promotion
 [text532, 43]
                          , soups, | breadsticks | , and pasta
 [text552, 24]
 [text583, 4]
                    Soup salad and | breadsticks | is a hassle
 [text712, 26] one time.The endless | breadsticks | and salad is
 [text712, 43]
                         You are a | breadsticks | slave and a
  [text726, 8]
                         soup, and | breadsticks | sucks
```


Prediction



Campaign Forecast

				Group			
Week of Ds	marketing-courses	media-training	pr-courses	pr-training	public-relations-cour	social-media-courses	social-media-training
April 8, 2018	76.93			52:48		55.08	55.21
April 15, 2018	62.67						56.63
April 22, 2018	56.67	64.20					60.25
April 29, 2018	56.99	77.68					59.96
May 6, 2018	55.45	70.03			62.00		53.95
May 13, 2018	50.78						
May 20, 2018	50.03						
May 27, 2018	56.92						59.80
June 3, 2018	63.86	56.83					71.60
June 10, 2018	58.21	76.60					75.25
June 17, 2018		75.22					68.38
June 24, 2018		57.99					57.91
July 15, 2018	61.76	62.76					
July 22, 2018	63.31	78.87				57.90	
July 29, 2018	53.69	85.38				63.43	58.83
August 5, 2018		80.93				60.57	74.46
August 12, 2018		71.89				57.91	82.54
August 19, 2018	54.78	64.05				58.96	74.56
August 26, 2018	58.00	60.66			54.63	58.94	59.79
September 2, 2	57.63	63.20			57.40	53,79	52.88
September 9, 2	59.20	70.03		54.43			59.24
September 16,	65.09	74.88					73.82
September 23,	71.25	71.66				55.13	B3.03
September 30,	73.62	63.44				60.82	79.07
October 7, 2018	75.35	60.12		56.64		59.99	70.86
October 14, 20	81.75	67.49		58.80		59.28	69.17
October 21, 20	89.44	80.27				68.82	73.97
October 28, 20	85.45	83.36				87.09	76.19

How Will Al Change Marketing's Future?

Fewer Humans Needed

EMERGING TECH

Coca-Cola Wants to Use Al Bots to Create Its Ads

Algorithms can already pick music and write copy

By Lauren Johnson | February 28, 2017

marketing templates

VII Image

188

Vide

Shopping

Mor

Search tools

About 43,400,000 results (0.92 seconds)

The Ultimate Collection of Free Content Marketing Templates - HubSpot

blog.hubspot.com/marketing/free-content-creation-templates =

Nov 16, 2016 - Discover 386+ templates that can help you improve all facets of your inbound marketing efforts -- from content planning to infographic design.

Marketing Plan Templates and Free Sample Marketing Plans - Mplans

www.mplans.com/sample-marketing-plans.php *

Working on a marketing plan for your organization? Get practical ideas and good models with dozen of examples of successful marketing plans. ... Choose a marketing plan from our most popular industries.

Retail & Online Stores · Restaurant, Cafe & Bakery · Services · Hospitality & Events

Business Marketing Templates - Marketing Brochures, Flyers

www.stocklayouts.com/Templates/...Marketing/Business-Marketing-Templates-Dasign...

Create professional brochures, newsletters, flyers, and more with do-it-yourself layouts. ... New Releases of Business Marketing Templates. ... Agency-quality, full-color graphic designs for creating business marketing materials.

Design and Marketing Proposal Templates - Free Sample and ...

https://www.pandadoc.com/design-proposals-and-marketing-templates =

You live in the world of design and marketing. Everything you do should wholly represent your brand and your key attention to branding and detail. It doesn't ...

17 Content Marketing Templates, Checklists - Content Calendar ...

contentmarketinginstitute.com/2013/06/essential-content-templates-checklists/ +
Jun 3, 2013 - By far, the most popular post we have ever published at the Content Marketing Institute in Must-Have Templates for Content Marketers.

2016 Content Marketing Toolkit: 23 Checklists, Templates, and Guides

contentmarketinginstitute.com/2016/01/checklists-templates-guides/ v

Jan 3, 2016 - Check out this content marketing DIY toolkit of checklists, templates, and resources, to achieve greater success. - Content Marketing Institute.

Marketing Plan Template: Exactly What To Include - Forbes

www.forbes.com/sites/.../2013/09/.../marketing-plan-template-exactly-what-to-include... *

If you do it with a template today, a machine does it without you do it with a template today, a machine does it without you to tomorrow. - @cspenn

Faster Marketing

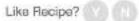
Hyper-Personal Marketing

PERSONA ONE

Mix up favorite flavors and ingredients. Stir in imagination. Create new cookie recipes everyone will love.

Watson invented Sriracha Cookie with sriracha, granulated sugar, vanilla extract, frosting, white chocolate chips, chocolate chips, Country Crock® Original buttery spread, flour, egg

MADE WITH Country Crock® Original buttery spread **GET A COUPON**



Watson inventions are not kitchen tested.

Please use your judgment and remain mindful of your food preferences and allergies.

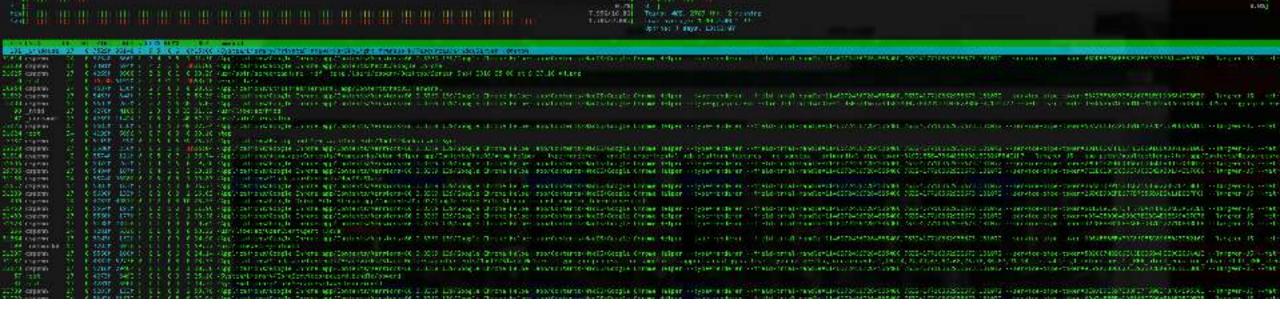
	Ingredients	Preparation	
 ½ cup sriracha ¾ cup granulated sugar 		chocolate chips 1/2 cup Country Crock® Original buttery spread	
1 tsp vanilla extract		3 cup flour	
 1½ cup frosting 		• 1 egg	0
. 3/. Ih white chacalate chine			1000

Higher Barriers to Entry

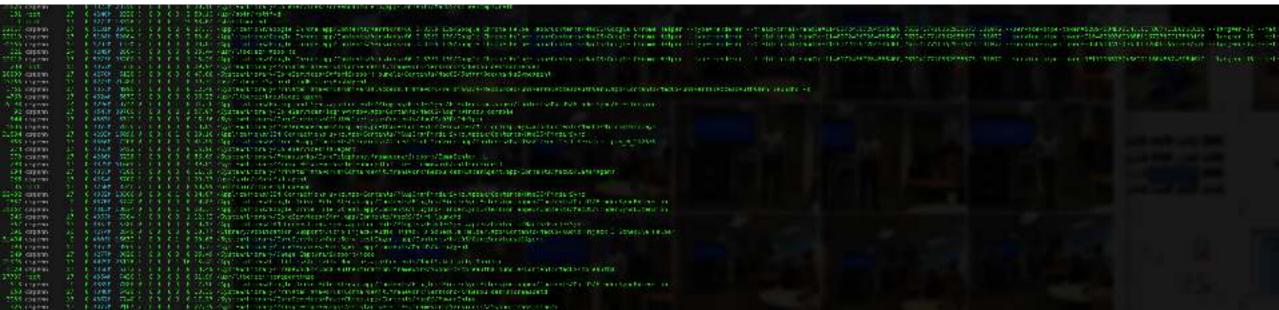
STAR

Cognitive Services

Machine Learning Languages to Start With



How to Prepare Your Career for Al

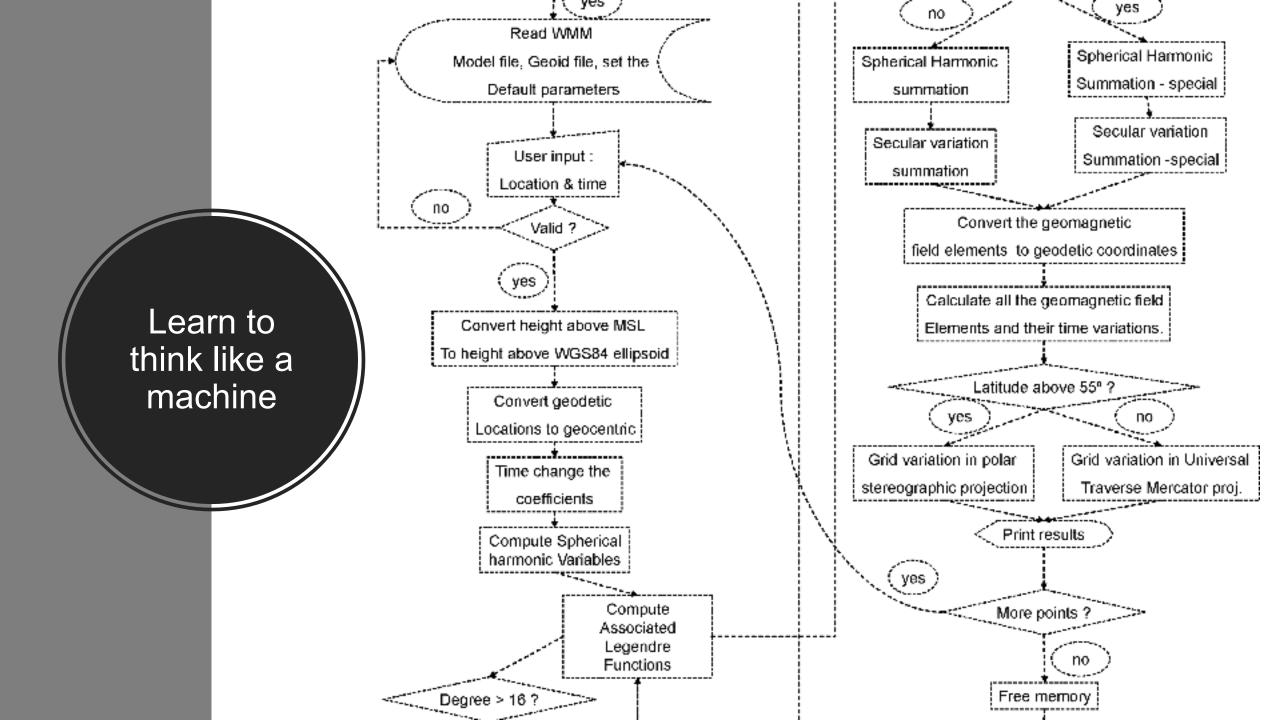


Multidisciplinary Skills

The 10 most in-demand hard skills in 2018 via LinkedIn

- 1. Cloud and Distributed Computing
- 2. Statistical Analysis and Data Mining
- 3. Middleware and Integration Software
- 4. Web Architecture and Development Framework
- 5. User Interface Design
- 6. Software Revision Control Systems
- 7. Data Presentation
- 8.SEO/SEM Marketing
- 9. Mobile Development
- 10. Network and Information Security

Algorithmic Thinking



Machine Oversight

Outcome-Focused

Deep Learning with Keras:: cheat sheet

Intro

teras is a high-level neural networks API developed with a focus on enabling fast experimentation. It supports multiple backends, including TensorFlow, CNTK and Theano.

TensorFlow is a lower level mathematical library for building deep neural network architectures. The kernas Ripackage makes it easy to use Keras and TensorFlow in R.

https://keras.rstudio.com

https://www.manning.com/books/deep-learning-with-r

INSTALLATION

The keins Ripackage uses the Python keras library. You can install all the prerequisites directly from R.

hopsy/servs.rstudio.com/reference/install_kervs.html

tibrary(keras)
install_keras()

See 7keras_install for GFU instructions

This installs the required libraries in an Anaconda environment or virtual environment 'r-tensorflow'.

Working with keras models

DEFINE A MODEL

keras_model() Keras Model

keras_model_sequential() Keras Model composed of a linear stack of layers

multi_gpu_model() Replicates a model on different option

COMPILE A MODEL

compile(object, optimizer, loss, metrics = NULL) Configure a Keras model for training

FIT A MODEL

fit_generator() Fits the model on data yielded batchby-batch by a generator

train_on_batch() test_on_batch() Single gradient update or mode: evaluation over one batch of samples.

EVALUATE A MODEL

evaluate(object, x = NULL, y = NULL, batch, size = NULL) Evaluate a Keras model

evaluate_generator() Evaluates the model on a data concrator.

PREDICT

predict() Generate predictions from a Kerns model

predict_proba([and predict_classes])

Generates probability or class probability predictions for the input samples

predict_on_batch() Returns predictions for a single-batch of samples

predict_generator() Generates predictions for the input samples from a data generator

OTHER MODEL OPERATIONS

summary() Print a summary of a Koras model.

export_savedmodel() (sport a saved model.)

get_layer() Retrieves a layer based on either its name (unique) or index

pop_layer() Remove the last layer in a model.

save_model_hdf5(); load_model_hdf5() Save/ Load models using HDF5 files

serialize_model(); unserialize_model() Serialize a model to an R object

clone modell) Clone a model instance

freeze_weights(); unfreeze_weights() Freeze and unfreeze weights

CORE LAYERS

layer_input() input layer

layer_dense() Add a densely connected NN layer to an output

layer_activation() Apply an activation function to an autput

layer_dropout() Applies Dropout to the input

layer_reshape() Reshapes an output to a certain shape

layer_permute() Pormute the dimensions of an input according to a given pattern

layer_repeat_vector() Repeats the input natimes

layer_lambda(object, f) Wraps arbitrary expression as a layer

layer_activity_regularization() Layer that applies an update to the cost function based input activity

layer_masking() Hasks a sequence by using a mask value to skip timesteps

layer_flatten() Flattens an input.

TRAINING AN IMAGE RECOGNIZER ON MINIST DATA

input layer: use MRIST images

mnist <- dataset_mnist()

x_brain < mnistStrain\$x; y_brain < mnistStrain\$y x_best < mnistStest\$x; y_test < mnistStest\$y

reshape and rescale

x_train < array_reshape(x_train, c(prow(x_train), 784)) x_test < array_reshape(x_test, c(prow(x_test), 784)) x_train < x_train / 255; x_test < x_test / 255

y_train <- to_categorical/y_train, 10(y_test <- to_categorical/y_test, 10)

defining the model and layers

model <- keras_model_sequential() model %#% | layer_denselunks = 256, activation = 'relu',

input_shape = c(784)) %>46 layer_dropout/yate = 0.4) %>% layer_dense(units = 128, activation = 'relu') %>% layer_dense(units = 10, activation = 'softmax')

4-compile (define loss and optimizer) model 95% compile).

ioss = 'categorical_crossentropy', optimizer = optimizer_rmsprop(), metrics = cf accuracy')

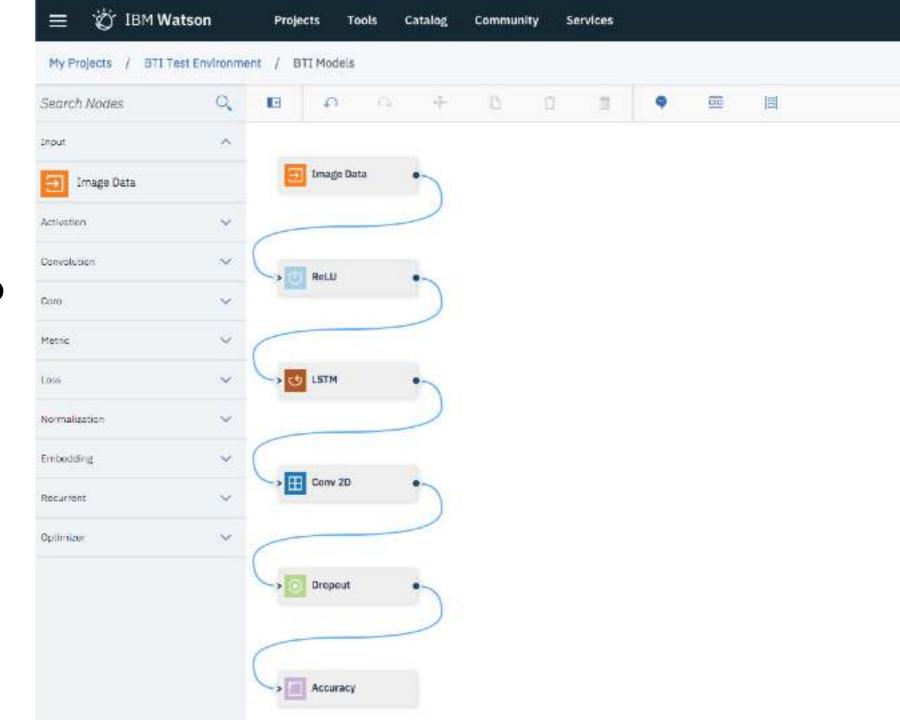
train (fit)

model %##i fit(x_train, y_train, epochs = 30, batch, size = 128, validation_split = 0.2) model %=% evaluate(x_test, y_test)

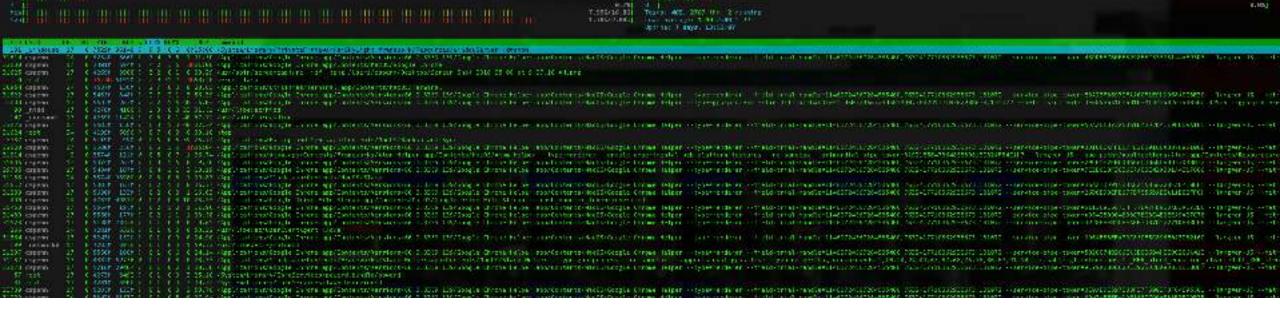
#5 kg (3x)

model for thip redict_classes(x_text)

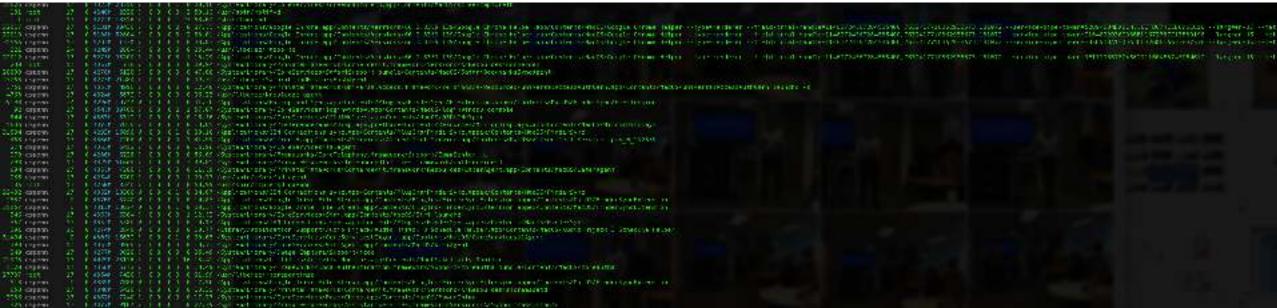
Let the machines do the heavy lifting



"Either you will manage the machines, or the machines will manage you." - @cspenn



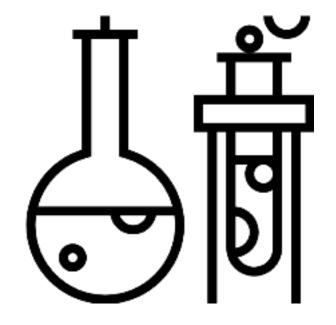
How to Prepare Your Company for Al



Who You'll Need

If Data Is The New Oil

Developers



Data Scientists

Marketing Technologists

Data Scientists

Having learned parameter estimate $\hat{\boldsymbol{\theta}}$, inference adoption probability is a relatively easier task. Given parameter estimate $\hat{\boldsymbol{\theta}} = <\hat{p}_1, \hat{\lambda}_{I|1}, \hat{\lambda}_{E|1}, \hat{\lambda}_{S|1}, \hat{\lambda}_{H|1}, \hat{p}_0, \hat{\lambda}_{I|0}, \hat{\lambda}_{E|0}, \hat{\lambda}_{S|0}, \hat{\lambda}_{H|0}>$, by (12), we have

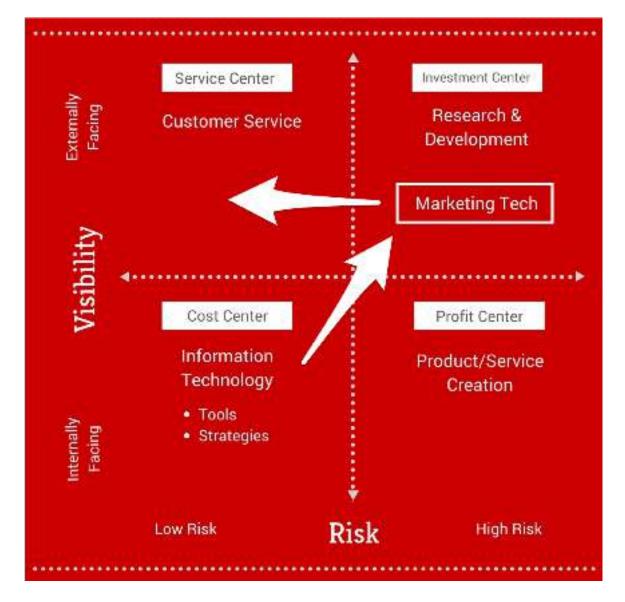
$$P(A_q = 1 | I_q, E_q, S_q, H_q) = \frac{P(A_q = 1)P(I_q | A_q = 1)P(E_q | A_q = 1)P(S_q | A_q = 1)P(H_q | A_q = 1)}{\sum_{a=0,1} P(A_q = a)P(I_q | A_q = a)P(E_q | A_q = a)P(S_q | A_q = a)P(H_q | A_q = a)}$$

$$= \frac{\hat{p}_{1}\hat{\lambda}_{I|1}\exp(-\hat{\lambda}_{I|1}I_{q})\hat{\lambda}_{E|1}\exp(-\hat{\lambda}_{E|1}E_{q})\hat{\lambda}_{S|1}\exp(-\hat{\lambda}_{S|1}S_{q})\hat{\lambda}_{H|1}\exp(-\hat{\lambda}_{H|1}H_{q})}{\sum_{a=0,1}\hat{p}_{a}\hat{\lambda}_{I|a}\exp(-\hat{\lambda}_{I|a}I_{q})\hat{\lambda}_{E|a}\exp(-\hat{\lambda}_{E|a}E_{q})\hat{\lambda}_{S|a}\exp(-\hat{\lambda}_{S|a}S_{q})\hat{\lambda}_{H|a}\exp(-\hat{\lambda}_{H|a}H_{q})}.$$
(42)

To compute adoption probability using (42), the only difficulty is the hidden variable H_q . However, given $\widehat{\boldsymbol{\theta}}$, probability density of H_q is known and we have

$$f(H_q|\widehat{\boldsymbol{\theta}}) = f(H_q|A_q = 1, \widehat{\boldsymbol{\theta}})P(A_q = 1|\widehat{\boldsymbol{\theta}}) + f(H_q|A_q = 0, \widehat{\boldsymbol{\theta}})P(A_q = 0|\widehat{\boldsymbol{\theta}}). \tag{43}$$

Marketing Technologists





Are you ready to be an Alpowered superhero?

Interested in a predictive forecast of your own? Grab one now:

https://braintrustinsights.com/services/insights-predict/marketing-gps-predictive-forecast/

Want to chat about your existing analytics issues? Grab a Table for Four:

https://braintrustinsights.com/services/insights-foundation/table-for-four-consultation-package/

Use code NEXT10X for \$50 off any service! Expires 31 May 2018.

